基于Petri网与机器视觉技术的自然环境机车故障诊断方法研究
1 引言
目前,对于机车故障检查与诊断存在各种方法,其中专家系统、故障树分析方法(FTA),以及两者的结合体是被广泛接受的方法,然而,他们也存在一些缺陷; FTA仅能表示逻辑关系[1],不能表示动态行为; 而专家系统突出弱点就是知识获取的“瓶颈”问题[2]; 基于故障树的专家系统诊断系统在一些方面虽得到优化,但是由于故障树模型之间的缺陷,又加上诊断的规则数目较多,当添加修改规则时,易出现规则之间的冲突和冗余,无法保证专家系统高效、正确地运行。
在故障检测与诊断领域中,Petri网不仅能够用图形符号表示故障事件系统逻辑关系,知识的完成和诊断推理,而且能够表示系统的动态行为,因此Petri网模型能够用于机车故障检测和可靠性的分析。
自1962年由Carl Adam Petri提出Petri网概念以来,Petri网己广泛应用于计算机操作系统、通信协议、分布式数据库系统及任务规划和性能评价等领域。在此利用Petri网的一致性状态及标记流程理论进行分析,以解决特定条件下可能发生的问题。与基于故障树或其他传统方法相比,本文提出的基于PETRI NETS 的机车故障诊断方案具有结构化表达能力强、推理搜索速度快以及数学严谨性强等优势。
2 Petri网络理论基础及其应用
2.1 Petri网络结构及其分析
从图形上看,Petri网络由四种不同类型元素组成:库所(place)、转移(transition)、连接库所和转移有向弧及位于库所中的托肯(token)。每个库所代表一个状态,而每个转移代表一个事件或行为产生过程。输入函数(i) 和输出函数(o) 分别描述了库所与转移之间联结函数关系。如果某一库所有k个标记(k为非负整数),那么说该库所有k个托肯,也称该库被标记。此定义便构成了五元组P=(P, T, I, O, M),其中M为当前标记集。
例如,在图1中展示的一个简单例子:
∑ = (P, T, I, O, M)
P = {p1,p2,p3,p4}
M = (0 0 0 0)
i(t1)={p1}; o(t1)={p2};
i(t2)={p3}; o(t2)={p4};
i(t3)= {p4}; o(t3)= { };
以此类推...
通过这些基本元素,我们可以建立起一个复杂而具体的地铁交通信号控制示例,并使用其来模拟实际情况下的交通信号控制策略。通过对应不同的交通流量变化,我们可以调整信号灯周期以达到最优效率,同时避免拥堵。这样的算法对于提高城市交通效率至关重要,并且这种基于数据驱动的人工智能技术已经开始逐步替代传统的人工调控模式。这项研究展现了如何将先进的人工智能技术融入到现实世界中的运输管理中,以提升服务质量并降低成本。